

Подлесный Дмитрий Владимирович

Декан факультета довузовской подготовки Саровского государственного физико-технического института (СарФТИ), заведующий кафедрой общей физики СарФТИ, кандидат педагогических наук, доцент, учитель физики Ельниковского лицея (село Ельники, Республика Мордовия), Заслуженный учитель Республики Мордовия.

Динамика движения материальной точки по окружности

Как показывает опыт проведения вступительных экзаменов по физике в вузы, тема «Движение по окружности» хуже усваивается школьниками по сравнению с другими темами раздела «Механика». В связи с этим це-

лесообразно напомнить основные моменты теории рассматриваемого вопроса и проиллюстрировать их примерами решения задач, чем мы и займёмся.

1. Немного теории

В инерциальной системе отсчёта для тела (материальной точки) с постоянной массой m, движущегося под действием, например, трёх сил \vec{F}_1 , \vec{F}_2 и \vec{F}_3 , уравнение второго закона Ньютона имеет вид:

$$m\vec{a} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3$$
,

где \vec{a} – ускорение, приобретаемое телом (в рассматриваемой инерциальной системе отсчёта) вследствие действия на него этих сил.

В проекциях на произвольно выбранные оси X и Y векторное уравнение второго закона Ньютона при-

нимает вид:

$$\left\{ \begin{array}{l} ma_{\rm x} = F_{\rm 1x} + F_{\rm 2x} + F_{\rm 3x}, \\ ma_{\rm y} = F_{\rm 1y} + F_{\rm 2y} + F_{\rm 3y}. \end{array} \right.$$

Применяя второй закон Ньютона для тела, движущегося по окружности, в качестве одной из осей выбирают ось, например ось X, направленную по радиусу к центру окружности (или параллельную ей). При таком выборе проекция a_x полного ускорения \bar{a} тела равна нормальному ускорению a_n и определяется по формуле:

$$a_{\rm x} = a_{\rm N} = \frac{v^2}{R} = \omega^2 R$$
.

Здесь v – скорость движения тела по окружности радиуса R, ω – угловая скорость его вращения.

Ещё раз подчеркнём, что на данном этапе изучения механики мы рассматриваем движение тел только в инерциальных системах отсчёта. В таких системах отсчёта на движущиеся тела действуют только силы, обусловленные взаимодействиями тел. Никакие центробежные силы, относящиеся к так называемым силам инерции, на тела не действуют!

Нередко употребляется выражение «центростремительная сила». Следует иметь в виду, что «центростремительной силы», как особой силы природы, не существует. На тело могут действовать несколько реальных сил (например, сила тяжести, сила упругости, сила трения и т. д.), при этом составляющую суммы всех этих реальных сил, направленную к центру вращения, иноназывают «центростремительной силой». Утверждения типа: «На тело действуют сила тяжести, сила натяжения нити и центростремительная сила» - очевидно, бессмысленны.

После этих замечаний рассмотрим ряд примеров решения задач.

2. Применение второго закона Ньютона при вращательном движении

Пример 1. Спутник, используемый в системе телесвязи, запущен в плоскости земного экватора так, что всё время находится в зените одной и той же точки земного шара. Найти

радиус орбиты спутника. Радиус Земли R = 6400 км, ускорение свободного падения у поверхности Земли принять равным $q = 10 \text{ м/c}^2$.

Решение. Движение спутника вокруг Земли происходит под действием силы \vec{F} притяжения со стороны Земли (рис. 1), равной согласно зако-

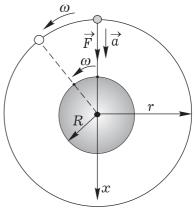


Рис. 1

ну всемирного тяготения $F = G \frac{Mm}{2}$, где Мит – массы Земли и спутника соответственно, r – искомый радиус орбиты, а G – гравитационная постоянная.

Принимая во внимание выражение для ускорения свободного падения g у поверхности Земли через массу Земли и её радиус $g = G \frac{M}{R^2}$, для силы притяжения F получим:

$$F = mg\left(\frac{R}{r}\right)^2. \tag{1}$$

Поскольку при своём движении спутник всё время находится в зените одной и той же точки земного шара, можно сделать вывод, что угловая скорость вращения спутника равна угловой скорости ω вращения Земли вокруг своей оси. Эту угловую скорость можно выразить через период вращения, т.е. через продолжительность суток на Земле (T=24 ч = =86400 с), и найти ускорение спутника:

$$a = \omega^2 r = \left(\frac{2\pi}{T}\right)^2 \cdot r \,. \tag{2}$$

Запишем теперь для спутника уравнение второго закона Ньютона в проекциях на ось X, показанную на рис. 1:

$$ma = F$$
.

Принимая во внимание соотношения (1) и (2), приходим к уравнению

$$m\left(\frac{2\pi}{T}\right)^2 \cdot r = mg\left(\frac{R}{r}\right)^2,$$

решая которое, находим искомый радиус r орбиты спутника:

$$r = \sqrt[3]{rac{gR^2T^2}{4\pi^2}} pprox 43000$$
 км.

Пример 2. Автомобиль, движущийся с постоянной скоростью по горизонтальной дороге, проходит поворот с радиусом закругления R=20 м.

При каких скоростях автомобиля его не «заносит» на повороте, есликоэффициент трения шин о поверх-

ность дороги μ = 0,5? Сопротивлением воздуха пренебречь.

Решение. Пусть m — масса автомобиля. Движение автомобиля на повороте происходит под действием

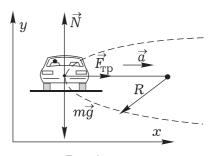


Рис. 2

трёх сил: силы тяжести $m \bar{g}$, силы нормальной реакции \vec{N} и силы трения покоя \vec{F}_{mp} (рис. 2). Ускорение автомобиля направлено при этом к центру окружности, по которой движется его центр масс, и определяется

по формуле: $a = \frac{v^2}{R}$, где v – скорость автомобиля.

Запишем уравнение второго закона Ньютона для автомобиля в проекциях на оси X и Y, показанные на рис. 2:

$$m\frac{v^2}{R} = F_{\rm Tp} , \quad 0 = N - mg .$$

Принимая во внимание соотношение для силы трения покоя

 $F_{ ext{Tp}} \leq \mu N$, нетрудно придти к неравенству

$$m\frac{v^2}{R} \leq \mu mg$$
,

решая которое, окончательно находим, что автомобиль не занесёт на повороте при условии, что

$$v \le \sqrt{Rg\mu} = 10 \text{ м/c} = 36 \text{ км/час}.$$

3. Применение закона сохранения энергии при вращательном движении

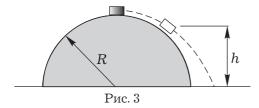
Часто решение задач на вращательное движение требует применения закона сохранения механической энергии. Ниже мы рассмотрим ряд примеров, а пока напомним, что механической энергией тела называют сумму его кинетической и потенциальной энергий. Так, например, механическая энергия тела (материальной точки) массой m, движущегося со скоростью v в поле земного тяготения, определяется по формуле:

$$E = \frac{mv^2}{2} + mgh ,$$

где g — ускорение свободного падения, h — высота, на которой находится тело по отношению к некоторому уровню, где потенциальная энергия тела принимается равной нулю.

Если в системе не действуют силы трения (точнее, силы трения не совершают работы) и не происходит неупругих соударений, то механическая энергия системы остаётся постоянной. В этом и состоит закон сохранения механической энергии.

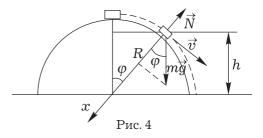
Пример 3. Небольшое тело соскальзывает без трения с вершины



закреплённого полушара радиуса R = 1,5 м (рис. 3). На какой высоте h

тело оторвётся от поверхности полушара? Начальной скоростью тела пренебречь.

Решение. Соскальзывание тела с полушара происходит под действием силы тяжести $m\bar{g}$ и силы нормаль-



ной реакции \vec{N} . В момент отрыва тела от полушара сила реакции обращается в ноль.

Пусть v — скорость тела в момент отрыва, а φ — угол, образуемый радиусом, проведённым к точке отрыва, с вертикалью (рис. 4).

Применяя второй закон Ньютона и закон сохранения механической энергии, а также принимая во внимание геометрию рисунка 4, приходим к системе уравнений:

$$\begin{cases} m \frac{v^2}{R} = mg \cdot \cos \varphi - N, \\ mgR = mgh + \frac{mv^2}{2}; \ h = R \cdot \cos \varphi. \end{cases}$$

Решая полученную систему с учётом, что в момент отрыва N=0, находим искомую высоту:

$$h=\frac{2}{3}R$$
.

Пример 4. Маленький шарик подвешен на лёгкой нерастяжимой нити длиной L=0.5 м. Какую минимальную скорость v_0 необходимо сообщить шарику в горизонтальном направлении, чтобы он смог совершить полный оборот?

Решение. Пусть v — скорость шарика в верхней точке (рис. 5). Применяя закон сохранения механической энергии и второй закон Ньютона, приходим к системе уравнений:

$$\begin{cases} \frac{mv_0^2}{2} = \frac{mv^2}{2} + 2mgL, \\ m\frac{v^2}{L} = mg + T, \end{cases}$$

где m – масса шарика, T – сила натяжения нити в момент прохождения

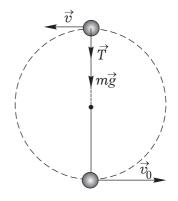


Рис. 5

шариком верхней точки.

Из полученной системы уравнений нетрудно увидеть, что скорость v_0 будет минимальной при условии минимальности скорости v и, следовательно, при равенстве нулю силы натяжения нити T. С учётом этого (T=0), нетрудно получить, что шарику необходимо сообщить в горизонтальном направлении минимальную скорость $v_0 = \sqrt{5Lg}$ для того, чтобы он смог совершить полный оборот.

Отметим, что если шарик подвешен на лёгком стержне, то шарику необходимо сообщить в горизонтальном направлении минимальную скорость v_0 , равную $v_0 = \sqrt{4Lg}$ для того, чтобы он смог совершить полный оборот. В этом случае минимальной скорости v_0 соответствует остановка шарика в верхней точке.

4. Качение обруча

В заключение рассмотрим качение тонкого обруча массой m со скоростью v по некоторой поверхности без проскальзывания. Покажем, что его кинетическая энергия определяется по формуле:

$$K = mv^2 \ (K \neq \frac{mv^2}{2} \ !).$$

В самом деле, кинетическая энергия твёрдого тела равна сумме кинетических энергий его частей (материальных точек), на которые мысленно можно разбить тело. Разобьём мысленно обруч на 2N равных частей и рассмотрим произвольную пару частей A и C, лежащих на одном диамет-

ре (рис. 6). Пусть α – угол, образуемый этим диаметром с вертикалью. Тогда для кинетической энергии этой пары частей имеем:

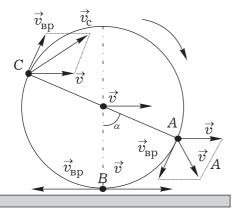


Рис. 6

$$K_1 = \frac{m_1 v_{\rm A}^2}{2} + \frac{m_1 v_{\rm c}^2}{2}$$
,

где $m_1=\frac{m}{2N}$ –масса одной части, а $v_{\rm A}$ и $v_{\rm c}$ – скорости частей A и C соответственно.

Принимая во внимание, что $v_{\rm Bp} = v$ и обруч катится без проскальзывания, и применяя закон сложения скоростей, можно получить, что

$$v_{\rm A}^2 = 2v^2(1 - \cos\alpha)$$

И

$$v_c^2 = 2v^2(1 + \cos\alpha).$$

Предоставляем читателю возможность в этом разобраться самостоятельно. С учётом выражений для $v_{\rm A}$ и $v_{\rm c}$ имеем

$$K_1 = 2m_1v^2.$$

Видим, что энергия рассматриваемой пары частей не зависит от угла α . Таких пар у нас N штук. Следовательно

$$K = NK_1 = 2Nm_1v^2 = mv^2$$
,

что и требовалось показать.

Пример 5. Тонкий обруч скатывается без проскальзывания с горки высотой h=10 м. Начальная скорость обруча равна нулю. Какую скорость v будет иметь центр обруча у основания горки?

Решение. При движении обруча на него, кроме силы тяжести и силы нормальной реакции, действует сила трения. Однако при отсутствии проскальзывания сила трения работы не совершает и, следовательно, мы можем воспользоваться законом сохранения механической энергии:

$$mgh = mv^2$$
.

Отсюда окончательно имеем

$$v = \sqrt{gh} = 10 \text{ m/c}.$$